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Evolutionary theory has yet to offer a detailed model of the complex transitions from a living 

system of one design to another of more advanced, or simply different, design.  Hidden within the 

writings of evolution‟s expositors is an implicit appeal to AI-like processes operating within the 

“cosmic machine” that has hitherto been evolving the plethora of functional living systems we 

observe.   In these writings, there is disturbingly little understanding of the deep problems 

involved, resting as they do in the very heart of AI.   The end-state requirements for a system, 

device, or “machine” with intelligence capable of design are examined.  The representational 

power must be sufficient to support analogical thought, an operation demanding  transformations 

of events in imagery, in turn a function of perception, both dependent on a non-differentiable 

flow of time.  The operational dynamics of the device must inherit this fundamental property of 

the dynamically transforming matter-field.   Whether the evolutionary mechanisms or 

algorithmics thus far envisioned by biology or AI are coordinate with such requirements is left 

seriously in doubt.           
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       Whether we are contemplating radios, robots, or robins, we are viewing very complex 

devices.  For radios or robots, we know the device was created by human minds via a not well 

understood process called “design,” and given the difficult birth of the radio, “creative design.”  

For robins, the evolutionary theory of Darwin tells us things are different.  The universe, acting as  
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a giant machine, employed a form of procedure or “algorithm” to produce the robin.  This 

procedure used random conjunctions of atoms to make chemical molecules.  With more random 

conjunctions, it produced an elementary, living “device,” perhaps a proto-cell.  It then used and 

continues to use random mutations, in conjunction with forces or events in the external 

environment, to effect “natural selections” which dynamically transform devices into yet different 

devices, resulting in things such as robins, rabbits, and a Rex or two of the Tyrannosaurus type.   

        With this giant machine, we have removed all need to design these devices, and most 

significantly, any form of Mind or Intelligence designing them. This view is very much in 

consonance with Artificial Intelligence, which envisions machine algorithms that successfully 

design devices without any role required for consciousness, or conscious perception.  The 

existence of AI and its mission is very much a hidden support of evolutionary theory.  Indeed, 

Lloyd (2006) has proposed that the universe is a vast quantum computer wherein a few simple 

programs were constructed via random processes, enabling the bootstrapping of the whole 

complex production algorithm and machinery into existence.   

        There is a difficulty, however.  Artificial Intelligence harbors a deep, unresolved problem, 

namely, that of commonsense knowledge.  It is precisely this form of knowledge that underlies the 

construction of devices, be it mousetraps, mice, or mammoths.  Knowledge of course is a 

function of mind.  Mind, in turn, is an integral participant in a flow of universal time that is 

indivisible or non-differentiable.  It is this simple fact that undermines AI‟s ability to solve the 

problem of commonsense knowledge, and as a result, any hidden support it could provide for the 

theory of evolution.   In turn, this means that the Cosmic Evolutionary Machine must be a 

different “device” than that envisioned either by AI or by theorists of evolution.  

      It is not my purpose here to dispute the fact that there is evolution.  But I intend to show that 

this extremely important subject, affecting profoundly our conceptions of man and mind, is being 

treated cavalierly by its expositors, and is far more complex than is being portrayed.  In fact, we 
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shall see that it is intimately entwined with this question: What is the relation of consciousness to 

cognition?  Here, we shall see that our model of time is critical.  

The Mousetrap and the Complexity of Devices   

        In recent years, consternation arose in the theoretical circles of evolution as Michael Behe 

(1996, 2007), an academic biologist, challenged the possibility of the “algorithmic” approach to 

design espoused by evolution.   Though Behe dealt heavily in the biochemical realm, he placed 

the problem initially in the intuitive context of a mousetrap. The (standard) mousetrap consists of 

several parts (Figure 1).  As a functioning whole, he argued, the trap is “irreducibly complex.” 

For the device to work as designed, all the parts must be present and organized correctly, else it 

does not function. 

 
Figure 1:  Mousetrap, standard issue.   

 

      The urge is to break the problem of instantiating this design into simpler components – 

evolving the separate, smaller parts. Natural selection buys nothing here, Behe argued.  Natural 

selection picks some feature or form or component to continue because it happens to have been 

proven useful for survival.  Evolving a single part (component), which by itself has no survival 

value, is impossible by definition – impossible, that is, by the definition of the role and function 

of natural selection.   But even if by chance the parts evolved simultaneously, there remains the 

enormous problem of organization of the parts.  How does this happen randomly?  Each part must 

be oriented precisely spatially, fitted with the rest, fastened down in place, and even fabricated, 

etc.   There are enormous degrees of freedom here – ways the parts can rotate, translate, and 

move around in space – which drive the odds against randomness to enormous proportions. 
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      The problem can quickly be placed in the biochemical realm. Consider just one such structure 

in the cell alone.  To manufacture palmitic acid, the cell relies on an elaborate circular molecular 

"machine."  At the machine's center is a small arm comprised of molecules.  The arm swings 

successively through six "workstations."  Each time the arm rotates, two molecular subunits of 

the fatty acid are added by the action of enzymes at the workstations, and after seven rotations, 

the required fourteen units are present and the fatty acid released.  For this rotary assembly to 

work, all six enzymes must be present in the right order and the molecular arm properly arranged.  

Now we ask, how, in what steps, always having a useful or survival value, does natural selection 

produce such a device? 

       Reviewers of Behe admit the lack of current solutions to this question.  To quote one,  “There 

are no detailed Darwinian accounts of the evolution of any fundamental biochemical or cellular 

system, only a variety of wishful speculations” (Shapiro, 1996, p. 63).   Nevertheless, 

evolutionists have reacted strongly, with attacks focusing heavily on the biological and 

biochemical level.  An interesting case is their attack upon a favorite example used by critics of 

evolutionary theory involving the gas-puff firing Bombardier beetle.  The beetle (there are many 

variants) uses a chemical combination of hydroquinones and hydrogen peroxide which collect in 

a reservoir. The reservoir opens into a thick-walled reaction chamber (in the beetle‟s rear) lined 

with cells that secrete catalases and peroxidases.  The resulting reaction quickly brings the 

mixture to a boiling point, vaporizing about a fifth.  The pressure closes the valve and expels the 

gases through openings at the tip of the abdomen in a powerful jet at a would-be attacker. If the 

system were not initially designed, with separate chambers for the chemicals, it is argued that the 

beetle itself would explode. The “exploding beetle” concept has been questioned, but more 

interestingly, Isaak (1997) has laid out a series of simpler beetle instantiations or steps, with 

examples of various steps embodied in other beetles of the class, which at least indicate a 

progression towards the Bombardier‟s sophisticated system.
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      In sum, there are definite biological arguments for the existence of simpler stages.  Note, 

however, that while one can demonstrate that there are simpler stages, this does not mean that one 

has an actual, concrete model of how one transitions from stage A to stage B, and then to stage C.  

It was this that formed the implicit force of Behe‟s “irreducible complexity” argument (cf. Behe, 

2007).  At this point, evolutionary theory invokes natural selection, which chooses B over B' or 

B", and which is effected by external forces of the environment.  This is vague enough, while the 

actual creation of B, B' or B" from A requires the mechanism of mutations.  

     That mutations can account for change in what is called “microevolution” is unquestioned.  

The fish in ponds in the depths of dark caves gradually turn white.   Certain light-colored moths 

in England during the dusty, sooty era of the industrial revolution gradually turned to a darkish 

color.  (With the decrease of industrial pollution, they have also recently “evolved” back again to 

a light color.)   But the assumption has been that this same mechanism can work for larger, more 

complex, structural transitions, where we move from dinosaur to bird, fish to frog, frog to rat, or 

even from variant 1 to variant 2 to variant 3 of the Bombardier beetle.   This is the point of 

contention, and here I must discuss things at the example level of the mousetrap.      

      The treatment of the mousetrap example per se by evolution theorists, with its question of 

transitions (from device A to device B, and from B to C), is less than satisfying.  In fact, as we 

shall see, it actually moves in the realm of AI, a realm where there are great problems precisely in 

this design dimension.  Keep in mind that while in the biological realm, we tend to talk about 

these transitions simply as “mutations,” there is much more going on, for just as in the mousetrap, 

we are talking about complex spatial fittings and fastenings of parts, complex form shaping and 

fabrications of the parts from materials.  To effect this, even considering the gene “switches” of 

“Evo Devo” (Carroll, 2005), would require extremely complex “programming” or modifications 

of the sequences in the genetic instructions to bring this about – i.e., long sequences of actions 

that must occur coherently,  that leave random probability behind, and verge, at least, on artificial 

design.    
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Evolution Theorists Attack the Mousetrap 

       An argument, often cited as though it were a definitive critique, was provided by McDonald 

(2000)  to demonstrate how the mousetrap could have simpler instantiations.  His caveat is that 

this is not an analogy for evolution per se, but the argument is taken as a critique of Behe  (e.g., 

Miller, 2003; Young and Edis, 2004). Working backwards, McDonald gradually simplified the 

trap, producing four “predecessor” traps of decreasing complexity.  Behe argued, however, it is 

not that simpler mousetraps do not exist.  The question is progression – the actual mechanism of 

movement from A to B to C.  If McDonald is taken as a defense of evolution, Behe (2000a) easily 

produces a strong counter argument.   Starting with McDonald‟s first and least complex trap 

(Figure 2, left) in the “sort of evolving” series, he examined the steps needed for McDonald to 

arrive at the second trap (Figure 2, right).  The first (or single piece) trap has one arm, under 

tension, propped up on the other arm.  When jiggled, the arm is released and comes down, 

pinning the mouse‟s paw.  It is a functional trap. 

 
Figure 2:  Mousetraps #1 (left) and  #2 (right) 

from McDonald‟s first series.  (All McDonald 

figures reprinted with permission.)  

 

             The second trap has a spring and a platform.  One of the extended arms stands under 

tension at the very edge of the platform.  If jiggled, it comes down, hopefully pinning some 

appendage of the mouse.  To arrive at the second, functional trap, the following appears needed:  

1. Bend the arm that has one bend through 90 degrees so the end is perpendicular to 

the axis of the spring and points toward the platform. 

2. Bend the other arm through 180 degrees so the first segment is pointing opposite 

to its original direction. 

3. Shorten one arm so its length is less than the distance from the top of the 

platform to the floor. 

4. Introduce the platform with staples (neither existed in the previous trap).  These 

have an extremely narrow tolerance in their positioning, for the spring arm must 

be on the precise edge of the platform, else the trap won‟t function.   
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All of this must be accomplished before the second trap will function – an intermediate but non-

functional (useless) stage cannot be “selected.”   This complicated transition is a sequence of 

steps that must occur coherently.  With each step required, we decrease the probability of random 

occurrence exponentially.    

         Each of the subsequent transitions in the first series (2-3, 3-4, 4-5, where 5 is the standard 

trap) proved subject to the same argument.  McDonald (2002) then produced a second, more 

refined series of traps.   He argued that the point was made that a complicated device can be built 

up by adding or modifying one part at a time, each time improving the efficiency of the device. 

Yet there are still problematic transformations between many of his steps.
1
 For example, in the 

second series, the transition between a simpler spring trap (Figure 3, trap five) and one now 

employing a hold-down bar (Figure 3, trap six) is  a visual statement of the difficulty of the 

problem.  Even if the simpler trap were to become a biologically based analog – a largish 

“mouse-catcher beetle” – sprouting six legs and a digestive system for the mice it catches, the 

environmental events and/or mutations which take it to the next step (as in trap six) would be a 

challenge to define.   

            
Figure 3:  Traps five (left) and six (right) from the second 

series.  Trap six now has a hold-down bar hooked into the 

platform and lodged (lightly) under the hammer arm.  

 

                                                           
1
 Because (for example) simpler mousetraps are shown to exist, irreducible complexity is 

critiqued as vague.  The two traps of Figure 3 however clarify the issue.  Trap five is simpler than 

trap six. But each trap is irreducibly complex; each fails to work as designed without all its 

components.  In some cases, the trap is indeed a slightly simpler version of the same design, as 

trap six of Figure 3 might be taken as a simpler version of a standard mousetrap which works 

without one of the standard trap‟s parts.  But inevitably the simpler traps morph to different 

designs which no longer effect quite the same function (e.g., trapping a paw vs. smashing the 

poor creature).  
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      But the most apparently decisive evolutionary argument is that indeed biological “parts” exist 

that in themselves are independently functional.  In essence, then, evolution has available to it 

pools of independently functional components from which to select, and from which to build 

various larger functioning wholes.   Kevin Miller (2003) considered this the finding of Melendez-

Hevia, Waddell, and Cascante. (1996) in the realm of the Krebs cycle.
2
  Miller applies this logic 

to the mousetrap. Each component can be conceived to be an independently functional part.  For 

example, the hold-down bar can serve as a “toothpick,” the platform as “kindling,” three of the 

components can work together as a “tie clip” (platform, spring and hammer),  and so on.  The 

implication of this argument is disturbing, for it indicates that the grasp of the problem is deeply 

insufficient.  Either the evolutionists, at this point, have simply become very weak AI theorists, or 

they know something the AI folks don‟t know.  The fact is, evolution theorists have blundered 

into the greatest of unsolved problems in AI, that of commonsense knowledge.  

The Problem of the Mousetrap  

      Ironically, my own intellectual career had an early phase wherein I contemplated what it 

would take for an AI program to design a mousetrap (Robbins, 1976).  The problem was 

presented as an initial list of components.  For example, and not exhaustively, a 12” cubical box, 

a sharpened pencil, a razorblade, a length of string, paper clips, rubber bands, staples, toothpicks, 

and of course a piece of (Wisconsin) cheese.  From this, the task is to create a mousetrap.  (At the 

time, I believe, this was used as a creativity test for future engineers.)   One AI program I 

considered was Freeman and Newell‟s (1971).   This program had a list of functional 

requirements and functional provisions for various objects.  For example, to design a KNIFE, it 

discovered that a BLADE provided cutting, but required holding.  A HANDLE provided holding.  

                                                           
2
 Behe, however, notes that this is simply like describing the various chemical transitions of oil, 

from its initial raw state, to gasoline, while ignoring the origin and explanation of the various and 

complex machinery employed at each stage of the refinery process. 
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By matching the requirements to an object‟s list of provisions, the program “designed” a knife.   

It is precisely the implicit approach of Miller (2003), as noted above. 

     I tried mightily to imagine how such a program would work in the mousetrap problem.   There 

are many possible designs.  I might make a form of crossbow, where the ends of the rubber band 

are attached to the outside of the box, the pencil (as an arrow) drawn back through a hole in the 

side, a paperclip holds it via a notch in the pencil, and a trip mechanism is set up with the 

paperclip,  the string and cheese.  Or I might devise a sort of “beheader,” where the razorblade is 

embedded in the pencil as an axe, the pointed pencil end lodged in a corner, the whole “axe” 

propped up by a toothpick with downward tension from the rubber band, string attached to the 

toothpick for a trip mechanism, etc.  

      What, I asked, would the database of objects‟ functional provisions and requirements look 

like?  To make the story short, I will say that I quickly abandoned any hope for this scheme.  The 

problem is far larger.  One rapidly starts to entertain the storage of “features.”  Noticing the 

“sharpness” of the pencil, it seemed, was integral to seeing it as supportive of the killing-function 

within the crossbow. It is doubtful that “killing” or “piercing” would have been listed in the 

database as “functional provisions” of a pencil.  The corner of the box provided “holding” for the 

pencil-axe, and while it is doubtful this would have been listed as a functional provision of box 

corners, it seems a type of feature.  Note, meanwhile, that in the axe case, the pencil “provides” 

something quite different from the pencil as arrow, while a certain feature of strength and rigidity 

has emerged in this context.   

      So do we envision a vector of pre-defined “features” for each object in our database?  At a 

later date, in essence, this would be the approach of Gentner (1983) and many subsequent 

connectionist instantiations (Doumas, Hummel, and Sandhofer, 2008; Holyoak and Thagard, 

1997; Hummel and Holyoak, 2005).  But features are very ephemeral – they are functions of 

transformations.  A fishing rod can be flexible under one transformation, sufficiently rigid under 

another.  A floppy sock, under the appropriate transformation, gains sufficient rigidity to become 
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a handy fly-swatter.  The pencil‟s rigidity under one transformation may change to just enough 

flexibility to support the launching of spit wads.  A box may preserve its edges and corners 

invariant under various rotations, but lose them completely under a smashing transformation 

applied by the foot.  And precisely the latter may be done to turn the small box in the potential 

components list above into a temporary dustpan.  Thus we would need to store all possible 

transformations upon any object.  

Transformations 

      McDonald (2000), as we saw, performed two “bending” transformations on the wire of 

mousetrap #1 to obtain mousetrap #2.  This form of dynamic transformation in thought heavily 

impressed the Gestalt psychologist, Max Wertheimer (1945).  He had observed children in a 

classroom being taught, via drawings of a parallelogram on the blackboard, the traditional, 

algorithmic method of dropping perpendiculars to find the area.  Yet, when Wertheimer himself 

went to the board and drew a rotated version of the parallelogram figure, he was shocked to see 

that the children failed to extend the method.  But outside the algorithmic-oriented classroom, 

Wertheimer observed a five year-old who looked at a cardboard cutout of a parallelogram, then 

asked for a scissors so she could cut the (triangular) end off and move it to the other side to make 

a rectangle.  This was bettered by the dynamic transformation exhibited by another five year-old 

child who folded the cardboard parallelogram into a cylinder, then asked for a scissors to cut it in 

half, announcing it would now make a rectangle.   

        We meet this dynamic “folding” transformation in Penrose (1994).  While his critique of AI 

was heavily attacked by the AI community, few noticed that in his characterization of “non-

computational” thought, Penrose had gravitated towards transformations and the invariants 

preserved under these transformations.    In his proof that successive sums of hexagonal numbers 

are always a cubical number (hence a computation that does not stop), he initially folds a 

hexagonal structure into a three-sided cube.  He then has us imagine building up any cube by 

successively stacking (another transformation) these three-faced arrangements, giving each time 
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an ever larger cube (Figure 4). This is a dynamic transformation over time, in fact multiple 

transformations with invariants across each.   We can expand the hexagonal structures 

successively, from 1, to 7, to 19, etc., each time preserving the visual hexagonal invariant.  Then, 

each is folded successively, each time preserving the three-faced structural invariant.  Then 

imagine them successively stacking, one upon the other, each operation preserving the cubical 

invariance.  Over this event, the features (or transformational invariance) of the transformation 

are defined.   

 
Figure 4:  Top:  A hexagonal number (19) form 

folded into a three-faced (side/wall/ceiling) 

structure.  Bottom:  Successive cubes built from 

side, wall, and ceiling.  Each side, wall, and ceiling 

structure make a hexagonal number.   

 

       These cases are images of events.  It is the ability to represent events in the medium of an 

image that has been so problematic to the information systems approach in cognitive science.  

Pylyshyn (1973) initially denied any need for mental images, arguing that the information in data 

structures is entirely sufficient to subsume the function of images.  Later (Pylyshyn, 2002), in his 

“null hypothesis,” while not denying their existence, he challenged  the field to explain why 

images are needed.   His key question was this: "What does the real work in solving the problem 

by [mental] simulation – a special property of images… or tacit knowledge?" (p. 9)  Thus, in 

contemplating the folding experiments of Shepard and Feng (1972), where subjects were required 

to mentally fold paper into objects of certain forms, he noted that the subjects had, by necessity, 

to proceed sequentially through a series of folds to attain the result.  Why?  "Because," he argued, 
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"we know what happens when we make a fold" (p. 164, original emphasis).  It has to do, he stated, 

with "how one's knowledge of the effects of folding is organized" (p. 164).   

        Sloman (1971), in a seminal paper, had already given Pylyshyn his answer. He contrasted 

the Fregean or syntactic mode of representation with what he termed the analogic mode.  In the 

analogic mode, there is the natural representation of constraints.  The paper does not disintegrate 

while it is being folded.  The edges stay stable and move to overlap one another.   One surface 

generally stays stationary.  All these constraints are in fact invariance laws defined over these 

event-transformations.  On the other hand, in syntactic systems, failures of reference are 

commonplace. The syntactically correct, “The paper screeched and burbled as it was folded,” 

makes little semantic sense – it instantly violates the invariance across folding events. The frame 

problem (McCarthy and Hayes, 1969) is in essence another statement of this problem of 

representational power (Robbins, 2002).  To Sloman, the greatest challenge faced by AI was 

achieving this (analogic) form of representation.  

      Again, we can recast Sloman‟s challenge:  What type of “device” is required to support this 

form of representational power?  But this is only to ask:  What type of device can support 

perception?   No visual imagery ever occurred without visual perception.  The congenitally blind 

bear witness to this.  The image is a question of, (1) perception and, (2) the memory of this 

perception.  In turn, the image is the knowledge. It is no less the knowledge than the actual 

perceiving of an event of folding is simultaneously – knowledge. What is a "fold" other than an 

invariant defined over  transformations in concrete experience?  We have seen folds made in 

sheets, folds made in paper, folds made in arms/elbows, folds made in sails, folds made by 

Penrose (1994) in three-faced hexagonal structures to make partial cubes, and even folds made 

with poker hands.  And we have made the folds with bodily action.  Something is always being 

folded.  There is no such thing as an abstract "folding,"  no such thing other than as a dynamic 

transformation preserving an invariant and defined over our concrete, perceptual experience.    

The Invariance Structure of Events 
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      Transformations and invariance.  Why the emphasis?   Firstly, discovering invariance laws is 

scientific explanation.  This has been heavily argued (Hanson, 1958; Kugler and Turvey, 1987; 

Wertheimer, 1945; Wigner, 1970; Woit, 2006; Woodward, 2000, 2001, 2003).  In this, science 

only models itself after the brain in perception.  E = mc
2
 is an invariance law.  F = -kX is an 

invariance law.  In relativistic physics, it is only the invariants (d=vt, d‟=vt‟) that are the realities 

of the relativistic universe (Lieber and Lieber, 1945), for it is these that hold across space-time 

partitions.  This essential endeavor of science is often beclouded in the psychological sciences, 

but it is invariance laws that characterize the ever transforming world of perception where events 

occur in the concrete ecological world.   As I have stressed many times (Robbins, 2002, 2004a, 

2004b, 2006a, 2006b, 2007, 2008, 2009), such events have an invariance structure.  An 

invariance structure is defined as such:  the transformations and invariants specifying an event 

and rendering it a virtual action.   

        A simple event that is illustrative is stirring coffee. The swirling coffee surface is a flow 

field (Figure 5), in this case in radial form.  The constant size of the cup, as one‟s head moves 

forward or backward, is specified, over time, by a constant ratio of height to the occluded texture 

units of the table surface gradient.  Over this flow field and its velocity vectors a value, , is 

defined by taking the ratio of the surface (or angular projection) of the field at the retina, r(t), to 

its velocity of expansion at the retina, v(t), and its time derivative. This invariant,  (or tau), 

specifies time to impending contact with an object or surface, and has a critical role in controlling 

action (Kim, Turvey, and Carello, 1993).    A bird, for example, coming in for a landing, must use 

this   value to slow down appropriately to land softly.  As the coffee cup is moved over the table 

towards us, this value specifies time to contact and provides information for modulating the hand 

to grasp the cup (Savelsbergh, Whiting, and Bootsma, 1991).  As the cup is cubical, its edges and 

vertices are sharp discontinuities in the velocity flows of its sides as the eyes saccade, where these 

flows specify, over time, the form of the cup ( Robbins, 2004a, 2007).  The periodic motion of the 
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spoon is a haptic flow field that carries what in physics is termed an adiabatic invariance – a 

constant ratio of energy of oscillation to frequency of oscillation (Kugler and Turvey, 1987).   

The action of wielding the spoon is defined by an inertial tensor, the diagonal elements of which 

represent the forces involved, or more precisely, the object‟s resistance to angular acceleration 

(Turvey and Carello, 1995).  This entire structure and far more must be supported, globally, over 

time, by the resonant feedback among visual, motor, auditory, even prefrontal areas.  In other 

words, it is this entire informational structure that must be supported, in ongoing fashion, over 

time, by the neural dynamics supporting the perception of the coffee stirring event.   

 

Figure 5: Optical flow field.  A gradient of 

velocity vectors is created as an observer moves 

towards the mountains.  The flow field “expands” 

as the observer moves.   At right, the flows as a 

cube rotates towards the observer. 

 

It is in these invariance structures that we find the foundation of knowledge and semantics 

(Robbins, 2002, 2008).   Knowledge and semantics are both served by a fundamental memory 

operation termed redintegration.  

Redintegration, Commonsense Knowledge and the Frame Problem 

      As I am walking along a road, I spot a rustle in the grass in the roadside embankment.  

Instantly an experience returns in which several blacksnakes rushed by me as I was walking up a 

hill years ago.  This is the elementary operation of redintegration.   It is the most ecological of 

memory operations. Wolff  (1732/2010), a disciple of Leibniz, first coined this law in 1732 in his 

Psychologia Empirica, stating that "when a present perception forms a part of a past perception, 
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the whole past perception tends to reinstate itself."    Klein (1970) notes that these remembered 

experiences are "structured or organized events or clusters of patterned, integrated impressions," 

and that Wolff had in effect noted that subsequent to the establishment of such patterns, the 

pattern might be recalled by reinstatement of a constituent part of the original pattern.  It is the 

mathematical description of these “event patterns” in terms of invariance laws that is the core of 

Gibson‟s theory. 

      The redintegration principle can be stated simply:  

An event E' will reconstruct a previous event E when E' is defined by the same 

invariance structure or by a sufficient subset of the same invariance structure. 

 

        I will not discuss, in this paper,  how a time-extended experience is “stored.”  It is sufficient 

here to assume the principle of exemplar theory (Crowder, 1993; Goldinger, 1998), which holds 

that every experienced event, in every detail, is stored.  Given the discussion above, this means 

the event‟s entire time-extended dynamic structure with defining invariants.   While exemplar 

theory simply uses the vague notion of events leaving “traces,” we can simply envision, as did 

Gelernter (1994),  a “stack” of experienced, coffee stirring events in memory, in fact, every 

coffee stirring event ever experienced.    When a present event, E‟, is perceived, with the brain 

therefore supporting the time-extended invariance structure of E‟, we can say with exemplar 

theory, that all the previous event traces are activated, or, more accurately, that this entire stack of 

experiences with similar dynamic structure,  is resonant with E‟.  

         We can imagine, then, a robot stirring coffee.   As he stirs, the coffee liquid medium begins 

to behave as a  thick cement, barely allowing the spoon to be in motion.  This is just one of a vast 

list of possible anomalies.  For others:   As the robot stirs, the cup floats off the table, or the 

motion of the liquid is in a counter-circular direction to the spoon, or the cup bulges in and out, or 

small geysers erupt from the liquid surface, or the sound is a “snap, crackle, pop” like Rice 

Krispies, or the spoon melts into rubber…. While it is not uncommon to see philosophers 

discussing the problem in terms of the robot updating his “beliefs” about coffee stirring, this is 
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misleading.  The prior, far more fundamental question is this:  How does the robot detect that this 

(or any of the above) is an unexpected feature of the event?   In the context of the frame problem, 

as the event is ongoing,  the robot must check, continually, his vast list of frame axioms defining 

not only the features of this event, but multitudinous dimensions of his external world.   

Discovering a method to reduce the list of axioms is exactly the frame problem.   

      In redintegration, we obtain a view of a far more powerful method.  The anomalous stirring 

event, with cup bulging in and out, retains sufficient invariance structure to send a redintegrative 

cue throughout the “stack” of stirring experiences, retrieving similar events of coffee stirring.  Yet 

there will be an “interference,” a dissonance with the whole.   Since we are dealing with a very 

concrete “device,” it is a felt dissonance – the discrepancy is instantly detected – and there is no 

need to check a list of frame axioms to see if this is an unexpected feature of the event.    

      As the body/brain is such a redintegrative device, this is, in essence,  its method of solving the 

frame problem.   Within this method, there lies implicitly its approach to the correlated problem 

of commonsense knowledge, and therefore the design of devices.   I will develop this in what 

follows and as we examine the approach of  AI and cognitive science to this problem.  

Connectionism versus Ecological Invariance  

      Connectionist models propose to be presenting the method by which the brain represents 

semantic knowledge or semantic cognition.  Rogers and McClelland (2004, 2008) present a 

scheme using a three layer network.  The input units correspond to an item in the environment, 

for example: ROBIN, or SALMON, or FLOWER.  The units in the relationship layer correspond 

to contextual constraints on the kind of information to be retrieved, for example: IS, CAN, HAS.  

The input pair, ROBIN CAN, they argue, corresponds to a situation in which the network is 

shown a picture of a robin and asked what it can do.  The network is trained to turn on the correct 

attribute units of the output layer, in this case: GROW, MOVE, FLY, SING (as opposed to 

SWIM, DIVE, FLOP).   As the connection weights are initially random, the output units of the 

network must be adjusted gradually, via a backpropagation algorithm based upon the amount of 
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error relative to the desired output state.  This adjustment often requires many hundreds of epochs 

of training.    

         Rogers and McClelland hold that this network is perfectly at  home in the ecological world.  

The input units, they hold, can be construed as receiving perceptual input, for example the 

observation of a robin sitting on a branch, and the output units are predicting possible events or 

outcomes, say, the robin flying away.  Obviously these statements would hold for, “The rustle in 

the grass” that predicts (retrieves) the slithering snakes.  As is the norm in these models, no effort 

is made to determine if this network could actually support the complex patterns that we have 

seen characterize time-extended events, or also, problematically, whether it makes any realistic, 

ecological or evolutionary sense to demand of the model of the brain that supports this form of 

redintegration that it require hundreds of epochs of training to establish this memory relationship.          

       We can place another ecological learning situation within the Rogers and McClelland 

framework.  Given the object, SPOON, in the context of CAN, the network would be trained to 

respond with the set of things a spoon can do, for example, STIR (as in coffee), SCOOP (as in 

cereal), CUT (as in grapefruit), BALANCE (as on the edge of the coffee cup).   In essence, for an 

event such as stirring coffee, we have bifurcated these various events into components – SPOON 

and STIR, or SPOON and CUT, or SPOON and SCOOP – and attempted to train the network to 

associate these components.   

        What sense does this make?  In reality, we are perceiving the spoon as an integral part of a 

stirring event, with all the event‟s ongoing invariance structure, to include the forces supplied by 

the spoon relative to the liquid medium, the resistance of the medium, its particular motion, the 

periodic motion of the spoon with its inertial tensor, adiabatic invariance, etc.  It is a structure that 

is necessarily being supported, over time, by the neurodynamics of the brain, else there is no 

perception of the ongoing event with its structure (Robbins, 2008).  Where is the “error?” That is, 

where is the error that must be weight-adjusted to achieve the proper “linkage”?   
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        The fact is, this partitioning of events into arbitrary components harkens back to 

Ebbinghaus, who made the move of removing all semantics from the study of memory, inventing 

instead, the nonsense syllable.  When studying how we learn nonsense syllable pairs such QEZ-

WUJ,  memory research is being faithful to this vision – studying the process of the formation of 

the elementary item-bond.  The unceasing desire to explain this “bond” is the elementary ill of 

associationism.  Subjects in these experiments quickly learned that if they could form an event, 

say a pudgy (pudge for WUJ) Turkish person wearing a fez (fez for QEZ), they could learn the 

pairs more easily.  Paivio‟s (1971) introduction of imagery into these experiments was the first 

near-ecological crack in the approach.  For an arbitrary pair such as DOG-GATE, the subjects 

now imagined an event such as a dog opening a gate, and performance greatly improved. The 

connectionist net is learning syntax-rules.  Syntax can be defined as rules for the concatenation 

and juxtaposition of objects (Ingerman, 1966).  QEZ-WUJ is a rule for the juxtaposition of 

objects, as is DOG-GATE when DOG and GATE are treated at the merely mechanical level as a 

pair of “marks” or objects, as is SPOON-CAN-STIR, etc.   The redintegrative process described 

above relies, rather, on the laws (invariance structure) of events.  

        But suppose we have error-trained the connectionist net such that for SPOON CAN, it 

responds with the set: STIR, SCOOP, CUT, BALANCE. This represents the network‟s semantic 

“understanding” of the capabilities of a spoon.   But we can easily understand the sentence:  The 

SPOON CAN CATAPULT (a pea).  We understand this because we grasp that the spoon will 

support the forces/invariance structure of catapulting.   It is in the invariance structure that the 

semantics of this sentence rests.   

      The difficulty for the connectionist net rests precisely in the realm of the powerful critique 

made by French (1990) in the context of the Turing test.  French proposed various tests for any 

computer attempting to masquerade as a human.  Obtaining a passing grade relied totally on 

having the requisite concrete experience.  One test was a rating game, with questions such as: 

Rate purses as weapons. 
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Rate jackets as blankets. 

Rate socks as flyswatters. 

     And of course we could have: 

Rate spoons as catapults. 

     The computer‟s ratings would be compared to human rating norms.   French argued that there 

is no way a computer can pass such a test without the requisite concrete experience. The problem 

equally holds for evaluations of statements such as: 

  A credit card is like a key. 

  A credit card is like a fan. 

      The list is endless.  Says French (1999), “…no a priori property list for „credit card,‟ short of 

all of our life experience could accommodate all possible utterances of the form, „A credit card is 

like X‟” (p. 94).  Without the experience, one incurs the necessity of either pre-programming or 

training-up the association weights of all possible pairs of objects.  Yet, this is exactly the implicit 

road down which the network of Rogers and McClelland is headed.   To even bring SPOON into 

some form of association with CATAPULT would require additional, explicit epochs of weight 

adjustments involving CATAPULT.   But a catapult is just one of a vast array of objects we could 

“associate” with a spoon.  We could, for example: 

   Rate a knife as a spoon. 

      A knife can serve as very good stirrer of coffee, showing the structural invariance required to 

move the medium under this motion – if this is the transformational context.  It is not much good 

for eating soup.  But this makes the programming of association weights even more impossible, 

for now they all depend upon a transformational context.  As French essentially noted, the neural 

net has no concrete experience with stirring, spoons, knives, or catapults.   But what is 

experience? At minimum, it is comprised of multimodal events structured by time-extended 

transformations and the invariants preserved over these. 
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       The rating events above are all forms of analogy.  In each,  we have, in effect, the projection 

of an invariance structure upon a possible component.  A knife is placed in a stirring event, a 

spoon in a catapulting event, a sock in a fly swatting event, or a box and pencil in a beheading 

event, and each “tested” on the emergence of the structural invariance (“features”) requisite for 

preserving the invariance structure of the event.  Here, the analogy defines the features.  

AI’s Approach to Analogy 

      The symbolic programming  method in AI has proffered several models for analogy making, 

the most famous of these being Gentner‟s (1983) Structure Mapping Engine.  To the Structure 

Mapping Engine, as in all AI,  the features define the analogy.  Thus the Structure Mapping 

Engine treats analogy as a mapping of structural relations relative to pre-defined features.  The 

solar system, for example, and the Rutherford atom both have specific features and their 

relationships described in predicate calculus form, e.g., Attracts (sun, planet), Attracts (nucleus, 

electron), Mass (sun), Charge (nucleus), etc.   Chalmers, French, and Hofstadter (1992) level a 

heavy critique upon this approach, noting the helplessness of the Structure Mapping Engine 

without this precise setup of features and relations beforehand, and with this setup given, the 

purely syntactical, nearly “can‟t miss” algorithmic or “proof” procedure that follows.  The 

resultant discovery of analogy is, to quote these critics, a “hollow victory.”  

      The connectionist models of analogy are equally wedded to this approach.  For Discovery of 

Relations by Analogy or DORA (Doumas, Hummel, and Sandhofer, 2008),  the engine for 

forming analogical relations is a comparator that operates on propositions which have a 

dimensional value.  If DORA “thinks” about a DOG of size-6 and a CAT of size-4, the 

comparator, detecting the dimensional value,  links a “more” relation to the size-6 (or 

“more+size-6”)  related to the DOG and a “less+size-4” for the CAT.   If this pattern reminds 

DORA of a previous comparison of the same type between a BEAR (more+size-9) and a FOX 

(less+size-5),  a further operation now compares the CAT and DOG units to the similar setup for 

the BEAR and FOX, eventually spawning a new unit, BIGGER, bound to BEAR and FOX or 
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Bigger (BEAR, FOX).  The authors of DORA argue that this same process will be fully 

applicable to ecological events, i.e., “relations” such as “chasing,” and by extension, “stirring.” 

       Ignoring for the moment that DORA‟s comparator is not even close to something that can 

handle actual, ecological events, let us suppose we have formed single place predicates (SPs) 

such as stirred (coffee), stirrer (spoon), and stirred (paint), stirrer (paint-stick).  According to the 

model, a pair of single place predicates enters working memory, in this case stirred (coffee) and 

stirrer (spoon).  These are “mapped” as a unit onto other SPs, in this case stirred (paint) and 

stirrer (paint-stick).   This mapping serves as a signal to link the SPs into a larger predicate 

structure, thus stir (spoon, coffee) and/or stir (paint-stick, paint).   

          This is simply a syntactic mapping.  It is based on the fact that the model would attach 

“stirrer” as a feature to spoon, and “stirred” as a feature to coffee.  Given the precise setup of 

these predicates, the mapping can occur via an algorithm. Without this precise setup, the process 

is helpless.  The network has no ability to create or recognize the validity of multi-place 

predicates such as stir (knife, coffee) or catapult (spoon, pea) without this setup.  It is another 

example of the validity of French‟s critique.  There is nothing in the network, unless it has been 

specifically trained and the “features” specifically set up, that would support these relations.  

Connectionism has simply met symbolic AI at the same problem – commonsense knowledge.      

        At DORA‟s heart is a model of redintegration.  When DORA envisions stirred (coffee) and 

stirrer (spoon) entering working memory while other propositions in long term memory that 

share the semantic units – stirred (paint) and stirrer (paint-stick) – are brought in and made 

available for mapping, this is the redintegration of events.  DORA‟s is based on a very 

problematic reactivation of the “same” semantic units.   Underlying the stirring of paint-sticks, 

spoons or spatulas are the complex invariance laws we have seen described  – the “wielding” 

characterized by inertial tensors, the adiabatic invariance underlying the periodic motion, the 

radial flow field of the liquid‟s surface.   There are no simple dimensional values analogous to 

“size-6,”  for example a “wielding-6” or “periodicity-3,” that can be assigned to “semantic units” 
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such that these that can now be “compared” via the simple algorithm of DORA.    DORA has no 

ability to deliver on what “same” can possibly mean in these kinds of ecological events, for 

DORA, as in all connectionist approaches, utterly begs the description of change.  

      The invariance structure of the event is the description of change.   It is this underlying 

structure that would need to be invoked as a constraint to prevent DORA from “thinking about” 

stirrer (spoon) and chased (Mary), and being reminded of a previous comparison, stirrer 

(spatula) and chased (Joe), thus deriving stirring (spatula, Joe).   The proposition, stirring 

(spatula, Joe), is the essence of a syntactic “failure of reference.”   As a sentence, it takes its place 

with other sentences that are syntactically correct but seem to have no semantic justification: 

1.  The leaf attacked the building. 

2.  The shadows are waterproof.  

3.  The spatula stirred Joe.  

4.  The building smoked the leaf. 

 

       Katz and Fodor (1963), early in the game, tried to solve this problem by “semantic markers” 

assigned to each lexical item in the deep structure.  These were simply syntactic rules trying to 

represent physical constraints – rules attempting to do the work of the invariance structure.   The 

"leaf" in (1) would thus receive a marker denoting it as inanimate among other things, while 

"attack" would receive a marker requiring its use with an animate object.  Having incompatible 

semantic markers, such a system brands the sentence as meaningless.  “Stirring” would have been 

tagged with a marker requiring its object to be, say,  liquid.  Joe, having no such marker, would 

have thus been seen as illegal in (3) and the string also branded as meaningless.   Unfortunately 

such sentences can appear very meaningful.  An analogy performs a transformation; it allows the 

requisite “features” to emerge.  Sentence (2), which would also have incompatible markers,  is 

perfectly interpreted as meaning that we can throw as much water on shadows as we like and they 

will be unharmed, i.e., the perceived event of water pouring upon a shadow shares an invariant 

with other events of water pouring over waterproof materials, namely the undamaged state of the 

material substance of these objects under this transformation.    As for (3), we can easily make 
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sense of this sentence, “The bad architecture of the system is like a spatula, stirring Joe, the 

programmer, into an anxious mess.”  Such transformations would quickly lead to "rules for 

relaxing the rules," but the rule system quickly ends in anarchy, being so flexible that it is useless 

as an explanatory device. 

       The apparent meaninglessness could only be avoided by a constraint, but this constraint is 

equivalent to having – stored somewhere and acting – the complete invariance structure of the 

event (of stirring, of pouring, etc. )!   The invariance structure is what prevents Joe from “being 

stirred” given the normal context of a stirring event – Joe is not easily inserted into this dynamic 

structure.  It is this structure that causes the feeling of anomaly – the failure to resonate with the 

laws of experience – in the sentence: 

                      As Joe stirred, the coffee snapped, crackled and popped. 

This structure cannot be syntactically represented.   You are begging an entirely different form of 

knowledge to supply the vast number of possible constraints involved even in this simple event.  

It is the event invariance structures that are prior in explaining these linguistic cases. 

       The features on which analogy is “based” cannot be preset, pre-defined.  As noted, it is the 

analogy that defines the features.  Analogy is a transformation.  This is to say that it is a process 

that occurs over a concrete flow of time.  It is supported only over concrete experience or the 

remembrance thereof, i.e., it is carried only over transforming imagery – the figural mode.    

Artificial intelligence, based in a classical notion of an abstract, spatialized time and without a 

theory of perception,  can support neither of these requirements for analogy, and it is analogical 

thought that is supporting the design of the mousetrap. 

Beyond the Fundamental Metaphysic of AI 

         AI is founded in what can be termed the classical metaphysic. It is the same metaphysic that 

lurks beneath the hard problem/the origin of qualia.  I have laid out arguments several times 

(Robbins, 2000, 2001, 2002, 2004a, 2006a, 2006b, 2007, 2008, 2010a, 2010b, 2012) on the 

consequences of this framework and on the alternative model that exists in Bergson (1896/1912) 
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when combined with Gibson (1966).  The essence of this classic metaphysic is an abstract space 

and time.  The space is conceived as continuum of points or positions.  Time is simply another 

dimension of this space.  Thus the motion of an object (itself a set of points) in this continuum is 

treated as a movement from (static) point to (static) point along a line or trajectory.  This is an 

infinite regress, for to account for the motion, we must reintroduce yet another line/trajectory of 

points between any two adjacent static points on the original line, ad infinitum.  This spatial 

treatment of motion is the origin of Zeno‟s paradoxes – the arrow, always occupying a static point 

in the continuum, “that never moves,” or Achilles, forever halving/dividing the distance, who 

never catches the hare.  Indeed, for Bergson, this space is simply “a principle of infinite 

divisibility.”   

       Bergson argued that to escape this, we must treat motion as indivisible, or as Nottale (1996) 

now states it, as non-differentiable.  Motion is better conceived as a melody where each note 

(“instant”) interpenetrates the next, and each is the reflection of the entire preceding series – an 

organic continuity.   As the object can move across the continuum, or the continuum (or the 

coordinate system) can be moved beneath the object, all motion becomes relative; all real motion 

is now lost.  But stars die, trees grow, couch potatoes get fat – there must be real motion.  Rather 

than “objects” in motion, we now view the whole of the matter-field as transforming, where the 

motions of “objects” are now changes or transferences of state.  

       As opposed to the (quality-less) homogeneity inherent in the abstract continuum of 

mathematical points, the matter-field is now intrinsically qualitative, and the nature of its non-

differentiable motion gives the entire universal field, in its time-evolution, a fundamental property 

of memory.  Each “past” instant does not recede into non-existence as the “present” instant 

arrives.  This “primary” memory inherent in the indivisible motion of the field makes possible the 

brain‟s specification of a past history of the motion of this qualitative field – a rotating cube, a 

buzzing fly, a folding hexagon, or a bending mousetrap arm.    
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       In the context of this “specification,” I have given arguments for ceasing to view the world as 

being encoded or represented within the brain, and seeing the brain, rather, as itself the decoder.  

The decoding is effected by the brain in the role of a concrete reconstructive wave passing 

through the external, holographic matter-field, with the brain‟s state being specific to a past 

motion of the field.  Via the brain‟s energy state (or its underlying chemical velocities), it is a 

specification at a particular scale of time or in essence a space-time partition – a “buzzing” fly as 

opposed to a fly flapping his wings like a heron.  The “image” (of the fly) is not mysteriously 

generated by the brain; it is now simply a diminution of the whole, a specification of a subset of 

the vast information in the dynamically changing holographic field.  The brain is not simply a 

“hologram.”  The reentrant neural processes, the oscillations,  the resonant feedback that have 

hitherto been taken solely to be abstract computations – all in effect contribute to this very 

concrete wave.  The brain‟s function is as concrete as that of an AC motor.  The motor creates an 

electric field of force; the brain creates a concrete, continuously modulated reconstructive wave 

“passing through” the matter-field. 

       The modulation pattern is driven by the invariance structure of the external events in the 

ecological world.  It is the invariance laws defining events that drive what the brain, as a 

reconstructive wave, specifies as the external image.  As in relativity, we require invariance laws, 

for it is such laws that hold across possible scales of time or space-time partitions. The 

specification is always an optimal specification based on the probabilistic information – with its 

inherent uncertainty due to the continuous flux of time (Lynds, 2003) – available to the brain.  

Even illusions are optimal specifications of a past form of motion of the matter-field.   

Five Requirements for an Embedded Intelligence 

        In this context, we can derive five requirements for a device that supports perception, and 

therefore cognition, and thus, the ability to design: 

1. The total dynamics of the system must be proportionally related to the events of the 

matter-field such that a scale of time is defined upon this field. 
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2. The dynamics of the system must be structurally related to the events of the matter-

field, i.e., reflective of the invariance laws defined over the time-extended events of 

the field. 

3. The operative dynamics of the system must be an integral part of the indivisible, non-

differentiable motion of the matter-field in which it is embedded.  

4. The information resonant over the dynamical structure (or state) must integrally 

include relation to or feedback from systems for the preparation of action (for from 

the vast information in the holographic field, the principle of selection is via relation 

to possible action by the body). 

5. The global dynamics must support a reconstructive wave.  

         To support perception, then, the device (and its “processing”) must literally be embedded in 

the non-differentiable time-flow of the matter-field.  A syntax-directed processor does not meet 

this requirement.  Though it is felt by some (Dietrich and Markman, 2000; Prinz and Barsalou, 

2000) that the operations of a computer riding atop its continuous dynamics can support 

semantics (and by implication experience and perception), this is not the case, and it is why, in 

(3), the term “operative dynamics” is used.  In the computer model, the effective, operative 

“dynamics,” if you can call it that, is in the syntactic manipulation of symbols.   The 

concatenation and juxtaposition of objects in the classical abstract space and discrete-instant 

“time” – operations, further, for which the scale of time is utterly irrelevant –  is not sufficient to 

support perception or the continuous, time-extended transformations characteristic of analogical 

thought.   

       And in general, it is not just the organization of components, or the material from which they 

are made.  It is the concrete dynamics they support.  As Haselager (2005) notes in the context of 

supporting an autopoietic system, “You cannot make a boat out of sand.”  Neither does one create 

the concrete, electric wave of an AC generator with the “proper organization” of toothpicks, 

rubber bands or abacus beads.  Whether biological or artificial, the dynamics required for 
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perception must support a very concrete wave, establishing a ratio of proportion, i.e., a scale of 

time, upon the matter-field.   

      It is this fundamental architecture that is required to support the time-extended images of 

perception, and therefore the time-extended, transforming images of memory employed in 

analogical thought.   

The Broadly Computational Mousetrap  

        We return then to the ”device” underlying design.   In the mousetrap task, we are designing 

from existing materials.  I do not say from “existing components” because none of the objects is 

yet a true component, though each has an independent function (e.g., a pencil, a rubber band).  

The invariance structure of an event – the drawing back and firing of a crossbow, the striking 

down of the axe – is being projected over the possible “components.”  In the process, their 

requisite features emerge.   

      This is a powerful transformation over a non-differentiable time.  I have striven here and 

elsewhere (Robbins, 2002, 2006a, 2006b, 2012) to lay out the basis for a device with sufficient 

representational power to support it and the implications for cognition it contains, to include the 

origin of the compositionality and systematicity required by Fodor and Pylyshyn (1988), the 

origin of the symbolic,  and the nature of explicit memory and thought (Robbins, 2009, 2012).  As 

Penrose argued, it is not computational in the abstract sense given by Turing.  Turing‟s definition 

is predicated upon the abstract space of the classic metaphysic; it captured the mechanical 

computations of the bank clerks of Turing‟s 1940s era, or the mechanical knowledge and 

calculations of the parallelogram-challenged children in Wertheimer‟s classroom (Robbins, 

2002).  It did not capture the computation of the five year old who dynamically transformed the 

cardboard parallelogram into a cylinder.  The manipulation of discrete symbols in an abstract 

space and time cannot support this, nor will a dynamical device that cannot support perception. 

Rather, the dynamical brain or robotic system must generate a very concrete waveform in 

concrete, non-differentiable time, a wave which supports a broader form of computation, broader 
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than Turing‟s narrow definition, but consonant with a broader definition he left fully open (cf. 

Copeland, 2000; Robbins, 2002).   

Evolutionary AI 

       I am led to the conclusion that a “device” of this power, inheriting attributes of the non-

differentiable time-flow of the matter-field in which it is embedded, is required to support the 

design transitions posed by McDonald‟s mousetraps.   AI, in its current form, is far from the basic 

requirements for an intelligent device described above.   Evolution theory cannot implicitly rely 

on AI-like algorithms for producing forms and creatures, whether mousetraps, mice or beetles; it 

cannot rely on Lloyd‟s (2006) giant, cosmic quantum computer – a computer, no matter how 

quantum, that is still in the Turing class of computing machines.    

      Now, of course, evolutionary theory says that it does not rely on AI.  It puts its weight on 

natural selection and mutations. To be clear, it must put all its weight on natural selection 

together with mutations (or “variation”).  I am simply removing any temptation to go beyond this.  

Unfortunately, evolution‟s expositors have already succumbed to the temptation.  Not even 

counting Lloyd‟s explicit appeal to programs underlying evolution,  here is an example:  bacteria 

have a “flagellum” – a thread-like propeller that drives them though the water.  This little device 

has a rotating axle, turning inside a bearing, driven by a molecular motor.  Behe thought it 

another irreducibly complex device.  Dawkins (2006) while ridiculing Behe to the point of 

impugning his motives for publishing, approvingly references Kevin Miller – the same Kevin 

Miller who saw no problem building mousetraps from arbitrary components.  Miller identified a 

mechanism comprising the type three secretory system (TTTS) used by parasitic bacteria  for 

pumping toxic substances through cell walls.  Since TTTS is tugging molecules through itself, it 

is a rudimentary version of the flagellar motor which tugs the molecules of the axle round and 

round. Thus, states Dawkins, evolution must have simply “commandeered” this component for 

the bacterial flagellum.  
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         And so the game is revealed.  Just what does “commandeer” mean?   Perhaps evolution‟s 

“blind watchmaker,” whom Dawkins sees working by “trial and error,” is peeking under his 

blindfold.  Did evolution devise the programs for the selection of the components, the fittings, 

and the modifications necessary?  Then, as we have just seen, evolution must be employing a far 

more powerful “device” than a Turing class computer.   Michael Shermer (2006) quotes Darwin‟s 

concept of “exaptation”: 

On the same principle, if a man were to make a machine for some special purpose, 

but were to use old wheels, springs, and pulleys, only slightly altered, the whole 

machine, with all its parts, might be said to be specially contrived for that purpose.  

Thus throughout nature almost every part of each living being has probably served, 

in a slightly modified condition, for diverse purposes, and has acted in the living 

machinery of many ancient and distinct specific forms.  (Darwin, quoted by 

Shermer, p. 68)  

 

Though Darwin is clearly going to be no better off than Miller in coaching AI on the design of  

mousetraps,  in lieu of “commandeer,” Shermer confidently employs the term “co-opt,” as in 

evolution “co-opts” features to use for another purpose.  For “commandeer,” Scott (2004 ) uses 

“borrowing and swapping.”  For “commandeer,” Dennett (1996) substitutes the term “generate 

and test,” holding, with no explication, that evolution simply “generates” new devices such as 

flagellar motors (or mousetrap #5) to test them out. Finally, Kevin Miller himself simply uses  

“mix and matching” saying, “…it‟s to be expected that the opportunism of evolutionary processes 

would mix and match proteins to produce new and novel functions”  (2004, p. 88).  If Dennett, 

Shermer or the evolutionary biologists know secretly how to program these things, if they have 

solved the problem of commonsense knowledge, they should be teaching the folks in AI.    

Programming in Evo Devo 

        Perhaps it may be felt that the recent discoveries of “Evo Devo” (Carroll, 2005) obviate 

these arguments.  It is now understood that all complex animals – people, flies, trilobites, 

dinosaurs, and butterflies – share a common “tool kit” of master genes that govern the formation 

and patterning of their bodies and body parts. With this tool kit, fish fins can be modified into the 

legs of terrestrial vertebrates, or a simple tube like leg can be modified into a wing.  The 
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development of these forms depends upon the turning on and off of genes at different times and 

places in the course of development, especially those genes that affect the number, shape and size 

of a structure.   Further, about 3% of our DNA or roughly 100 million bits is regulatory in nature.  

This DNA is organized into “switches” that integrate information about position in the embryo 

and the time of development.  

       In some essential respects, then, we have discovered a programming language.  It is a 

language that interfaces with the concrete, biological world, and programmed correctly, can 

produce complex, concrete, functioning forms.  But Freeman and Newell also, in their 

manipulation and matching of functional provisions of objects to functional requirements, fully 

intended this to be done in a programming language.  As in any complex language, its effect (its 

semantics) depends entirely on the correct sequencing of its instructions.  It must form a proper 

program – or it either “blows up” with logic errors or produces gibberish.  Unless you wish to be 

ridiculed by the programming profession,  the complex, programmed sequence does not happen 

by chance, no more than the instructions of a JAVA program to display a web screen occur by 

luck.  Some one, some thing, some force guides the sequencing derived from the complex and 

rich instruction set and syntax available.  A flick of a “switch” to the wrong value and a leg grows 

on top of a fly‟s head – or a useless spring is placed at the wrong position on the mousetrap.   

      The problem posed by Behe‟s humble mousetrap remains in full force.  Nothing has changed.  

The use of a language still implies knowledge of its semantics, and in the mousetrap context, this 

still involves the transformations, positioning, fabrications, fittings and fastenings of parts that all 

work toward a concrete function and which must enfold invariance laws.  The smug rejection of 

mousetraps should cease, and the deep problem they represent be addressed.  Until then, I expect 

that we still will see liberal use of the equivalents of “co-opting” and “commandeering,” now 

appearing in statements such as “evolution created this new instruction set,” or it “modified this 

instruction set.” 
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      This is not to mention one other obvious fact:  there are  many languages – JAVA, COBOL, 

FORTRAN, C++, Assembler, BASIC.  I have yet to hear of one that was discovered just laying 

around, or that defined itself and published a user manual.  Some one dreamt it up.  If the 

powerful gene/switch language is an exception, how did this occur?  

Conclusion 

      This discussion should not be construed as an argument for Intelligent Design in evolution.  In 

Creative Evolution (1907/1911), with detailed argument, Bergson rejected both radical 

mechanism and finalism.  In radical mechanism we see the vision, accepted by Dennett and 

inherent in Darwin, of the great universal machine, unrolling or unfolding its forms and creatures, 

with deterministic precision.    The word “time” means nothing to this conception.  It has never 

taken to heart the implications of the simple fact that where time is melodic,  where each “instant” 

is the reflection of the whole history of change – nothing can truly repeat.  This undermines the 

very notion of deterministic causality.  

       Finalism is Bergson‟s term for the conception that the universe is the result of a vast plan, an 

enormous idea or conception.   It is simply the inverse compliment of radical mechanism.   Where 

radical mechanism drives towards the end result via its laws and initial conditions, finalism, from 

the other direction,  draws the results irresistibly to the fulfillment of the great idea.  The 

unforeseen creativity of real, concrete time is eclipsed.  Finalism too cannot spell t-i-m-e,  and 

Intelligent Design, particularly when taken “from the beginning of things,” is in the end – 

finalism. 

        It was with deep thought that Bergson himself directed his own ship, steering a direction 

between finalism and mechanism.  He held to a vision of evolution which respects the nature of 

time.  His vision has been rejected in knee-jerk fashion as “vitalism,”  though in fact he critiqued 

the vitalist position.  But perhaps we are nearing the point when a more profound direction of 

thought on evolution and time, and on mind and mousetraps, can be considered.   
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